Optimal power flow using the gradient method to reduce electrical losses in power systems

Main Article Content

Jesús María López Lezama
Luis Alfonso Gallego Pareja

Keywords

optimal power flow, active power losses reduction, optimization in power systems

Abstract

This paper presents an optimal power flow model using the gradient method for the reduction of losses in power systems. The algorithm allows adjusting a set of control variables to find an operation point that minimizes active power losses. The method is based on the power flow solution by Newton’s method. Limits on idependent variables are handled using penalty functions. The algorithm performance is tested using two different approaches to calculate the step size along the feasible direction: a constant step size and a variable step size using the parable adjustment method.

Downloads

Download data is not yet available.
Abstract 2026 | PDF (Español) Downloads 1079

References

[1] J. Carpentier. Contribution a l’Étude du Dispatching Économique. Bulletin de la Sociéte Francaise des Électriciens, ISSN 0366–3213, 3, 431–447 (August 1962).

[2] H. W. Dommel and W. F. Tinney. Optimal Power Flow Solutions. IEEE Transactions on Power Apparatus and Systems, ISSN 0018–9510, PAS–87(10), 1866– 1876 (October 1968)

[3] James Daniel Weber. Implementation of a Newton–Based Optimal Power Flow into a Power System Simulation Environment . University of Wisconsin, USA, 1995.

[4] A. M. H. Rashed and D. H. Kelly. Optimal Load Flow Solutions Using Lagrangian Multipliers and the Hessian Matriz . IEEE Transactions on Power Apparatus and Systems, ISSN 0018–9510, PAS–93(5), 1292–1297 (1974).

[5] S.M. Chan and E. Yip. A solution of the transmission limited dispatch problem by sparse linear programming. IEEE Transactions on Power Apparatus and Systems, ISSN 0018–9510, PAS 98(3), 1044–1053 (May 1979).

[6] N. Grudinin. Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, ISSN 1558–0679, 13(4), 1219– 1225 (November 1998).

[7] D. I. Sun, B. Ashley, B. Brewer, A. Hughes and W. F. Tinney. Optimal Power Flow by Newton Approach. IEEE Transactions on Power Apparatus and Systems, ISSN 0018–9510, PAS-103(10), 2864–2880 (October 1984).

[8] Elizete de Andrade Amorim. Fluxo de Potˆencia Otimo em Sistemas Multimercados a través de um Algoritmo Evolutivo Multiobjetivo, Tese (Doutorado em Engenharia Elétrica), UNESP, Ilha Solteira S. P., Julho 2006.

[9] Roberto Battiti and Giampietro Tecchiolli. The Reactive Tabu Search. ORSA Journal on Computing, ISSN 0160–5682, 6(2) 126–140 (1994).

[10] J. A. Momoh, M. E. El-Hawary and R. Adapa. A review of selected optimal power flow literature to 1993. II Newton, linear programming and interior point methods. IEEE Transactions on Power Systems, ISSN 1558–0679, 14(1), 105–111 (February 1999).

[11] J. A. Momoh,M. E. El-Hawary and R. Adapa. A review of selected optimal power flow literature to 1993. I Nonlinear and quadratic programming approaches, IEEE Transactions on Power Systems, ISSN 1558–0679, 14(1), 96–104 (February 1999)