Un modelo combinado de despacho pool/bilateral para mercados

Main Article Content

Jesús María López Lezama
Mauricio Granada–Echeverri
Luis Alfonso Gallego Pareja

Keywords

despacho óptimo, contratos bilaterales, mercados de energía.

Resumen

La operacíon segura del sistema de potencia es una tarea difícil para el operador del sistema, el cual es responsable por la coordinación, control y monitoreo de este. En la mayoría de los sistemas de potencia, la seguridad es manejada mediante una metodología multi–etapa. En este caso, los criterios de seguridad son incorporados mediante restricciones adicionales que modifican el cálculo de despacho inicial. En este artículo se presenta un modelo de despacho de generación para mercados eléctricos competitivos considerando restricciones de seguridad. La metodología propuesta combina el despacho de generación de mercados pool y contratos bilaterales con flujos de potencia óptimos post–contingencia acoplados en un solo modelo de despacho, lo cual evita ineficiencias económicas que aparecen en los despachos convencionales multi–etapa. El modelo propuesto es lineal, y como tal, se basa en el modelo DC de la red. Un sistema didáctico de seis barras y el sistema IEEE RTS–24 son utilizados para ilustrar la operación y efectividad de la metodología propuesta y para compararlo con el despacho pool/bilateral básico sin restricciones de seguridad. Los resultados muestran que la inclusión de restricciones de seguridad lleva a un despacho más costoso. Por otra parte, se encontró que la ejecución de contratos bilaterales firmes puede llevar a problemas de congestión en el sistema.

PACS. 88.80.H-, 88.50.Mp, 88.05.Lg

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 758 | PDF (English) Downloads 281

Referencias

[1] A. Gómez–Expósito, A. J. Conejo and C. Cañizares. Electric Energy Systems; Cap 5: Economics of Electricity Generation, ISBN 978–0–8493–7365–7. CRC Press Taylor Francis Group, 2009.

[2] O. Alsac, J. Bright, M. Prais and B. Stott. Further developments in LP–based optimal power flow. IEEE Transactions on Power Systems, ISSN 0885–8950, 5(3), 697–711 (1990).

[3] M. Ilic, F. D. Galiana and L. Fink. Power Systems Restructuring: Engineering and Economics, ISBN 0792381637. Springer, 1998.

[4] F. Perry Sioshansi. Competitive Electricity Markets: Design, Implementation, Performance, ISBN 978-0-08-047172-3. Elsevier Global Energy and Economics Series, 2008.

[5] J. Martines–Crespo, J. Usaola and J. L. Fernández. Security–constrained optimal generation scheduling in large–scale power systems. IEEE Transactions on Power Systems, ISSN 0885–8950, 21(1), 321–332 (2006).

[6] Y. Fu, M. Shahidehpour and Z. Li. AC contingency dispatch based on security–constrained unit commitment . IEEE Transactions on Power Systems, ISSN 0885–8950, 21(2), 897–908 (2006).

[7] B. C. Ummels, M. Gibescu, E. Pelgrum, W. L. Kling and A. J. Brand. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Transactions on Energy Conversion, ISSN 0885–8969, 22(1), 44–51 (2007).

[8] J. Hetzer, D. C. Yu and K. Bhattarai. An economic dispatch model incorporating wind power . IEEE Transactions on Energy Conversion, ISSN 0885–8969, 23(2), 603–611 (2008).

[9] Kuo Cheng-Chien. A novel coding scheme for practical economic dispatch by modified particle swarm approach. IEEE Transactions on Power Systems, ISSN 0885–8950, 23(4), 1825–1835 (2008).

[10] He Da–Kuo, Wang Fu–Li and Mao Zhi–Zhong. Hybrid genetic algorithm for economic dispatch with valve–point effect . Electric Power Systems Research, ISSN 0378–7796, 78(4), 626–633 (2008).

[11] J. G. Vlachogiannis and K. Y. Lee. Economic load dispatch–A comparative study on heuristic optimization techniques with an improved coordinated aggregation–based PSO. IEEE Transactions on Power Systems, ISSN 0885–8950, 24(2), 991–1001 (2009).

[12] F. C. Schweppe, M. C. Caramanis, R. D. Tabors and R. E. Bohn. Spot Pricing of Electricity, ISBN 0-89838-260-2. Springer, 1988.

[13] J. Condren, T. W. Gedra and P. Damrongkulkamjorn. Optimal power flow with expected security costs. IEEE Transactions on Power Systems, ISSN 0885–8950, 21(2), 541–547 (2006).

[14] S. K. Uehara, L. Nepomuceno, and T. Ohishi. A combined pool/bilateral model including post–contingency security constraints. Congresso Brasileiro de Automatica (CBA), Juiz de Fora, Brasil, 2008.

[15] O. Alsac and B. Stott. Optimal Load Flow with Steady–State Security. IEEE Transactions on Power Apparatus and Systems, ISSN 0018–9510, 93(3), 745–751 (1974).

[16] J. S. Thorp, R. J. Thomas and Jie Chen. Time–space Methods for Determining Locational Reserves: A Framework for Locational Based Pricing and Scheduling for Reserve Markets. Report to the Department of Energy, 2002.

[17] J. M. López–Lezama, C. E. Murillo–Sánchez, L. J. Zuluaga and J. F. Gutiérrez– Gómez. A contingency–based security–constrained optimal power flow model for revealing the marginal cost of a blackout risk-equalizing policy in the colombian electricity market . Proceedings of the IEEE Transmission and Distribution Conference and Exposition: Latin America, ISBN 1-4244-0287-5, 1–6 (2006).

[18] J. Chen, J. Thorp, R. J. Thomas and T. D. Mount. Locational Pricing and Scheduling for an Integrated Energy–Reserve Market . Proceedings of the 36th Hawaii International Conference on Systems Sciences, ISBN 0–7695– 1874–5, 2003.

[19] F. D. Galiana and M. Ilic. A Mathematical Framework for the Analysis and Management of Power Transactions under Open Access. IEEE Transactions on Power Systems, ISSN 0885–8950, 13(2), 681–687 (1998).

[20] F. D. Galiana, I. Kockar and P. C. Franco. Combined Pool/Bilateral Dispatch – Part I: Performance of Trading Strategies. IEEE Power Engineering Review, ISSN 0272–1724, 17(1), 68–69 (2001).

[21] I. Kockar and F. D. Galiana. Combined Pool/Bilateral Dispatch: Part II–Curtailment of Firm and Nonfirm Contracts. IEEE Transactions on Power Systems, ISSN 0885–8950, 17(4), 1184–1190 (2002).

[22] P. C. Cuervo, I. Kockar and F. D. Galiana. Combined Pool/Bilateral Dispatch: Part III–Unbundling Costs of Trading Services. IEEE Transactions on Power Systems, ISSN 0885–8950, 17(4), 1191–1198 (2002).

[23] L. Nepomuceno, S. K. Uehara and T. Oshiri. An Active/Reactive Dispatch Model for Pool/Bilateral Coordination. Proceedings of the XVIII National Seminar on Energy Production and Transmission–SNPTEE, Brazil, October, 2005.

[24] A. J. Wood and B. F. Wollenberg. Power Generation, Operation, and control, ISBN 978-0471586999. Wiley Interscience, 1996.

[25] C. Grigg, P. Wong , P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong, S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton, N. Rau, D. Reppen, A. Schneider, M. Shahidehpour and C. Singh. The IEEE reliability Test System–1996. A Report Prepared by the Reliability Test System Task Force of the Applications of Probability Methods Subcommittee. IEEE Transactions on Power Systems, ISSN 0885–8950, 14(3), 1010–1020 (1999).

[26] J. M. Arroyo and F. D. Galiana. On the Solution of the Bilevel Programming Formulation of the Terrorist Threat Problem. IEEE Transactions on Power Systems, ISSN 0885–8950, 20(2), 789–797 (2005).

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.